Big data i social media Codi:  M1.661    Crèdits:  5
Consulta de les dades generals   Descripció   L'assignatura en el conjunt del pla d'estudis   Coneixements previs   Objectius i competències   Continguts   Consulta dels recursos d'aprenentatge de què disposa l'assignatura   Recursos d'aprenentatge i eines de suport   Bibliografia i fonts d'informació   Metodologia   Informació sobre l'avaluació a la UOC   Consulta del model d'avaluació   Avaluació continuada   Avaluació final   Feedback  
Aquest és el pla docent de l'assignatura. Us servirà per planificar la matrícula (consulteu si l'assignatura s'ofereix aquest semestre a l'espai del Campus Més UOC / La Universitat / Plans d'estudis). Un cop comenci la docència, heu de consultar-lo a l'aula. El pla docent pot estar subjecte a canvis.

Big data i social media és una assignatura optativa de 5 crèdits del màster universitari de Social Media, gestió i estratègia. Aquesta assignatura proporciona diferents estratègies d'anàlisi de les dades que són presents en mitjans socials com Twitter o Facebook. Es posaran en pràctica diverses eines per a dur a terme la recollida de dades dels mitjans socials, analitzar-les mitjançant tècniques de Mineria de Dades i preparar la visualització final dels resultats obtinguts. L'assignatura té un enfocament molt pràctic i dinàmic amb l'objectiu que els estudiants puguin posar en pràctica de manera immediata els continguts del curs aplicant-los a temes del seu interès.
  Els objectius d'aprenentatge que es plantegen en aquesta assignatura són els següents:
- Recollir i analitzar de les dades que són presents en els mitjans socials. 
- Dur a terme operacions i anàlisis bàsiques amb tècniques de Mineria de Dades.
- Fer servir eines per a la visualització dels resultats obtinguts.

Amunt

L'assignatura optativa Big data i social media s'emmarca en el bloc d'assignatures optatives del màster que permet aprofundir especialment en l'àrea de recerca centrada en els mitjans socials. Així mateix, també permet conèixer els mitjans socials com a canal des del qual es pot obtenir la informació i des del qual es distribueix aquesta informació.

Amunt

No es requereix cap coneixement previ.

Amunt

Objectius El contingut acadèmic d'aquesta assignatura s'orienta a aconseguir que l'estudiant assoleixi els objectius següents: 

  • Extreure continguts dels mitjans socials fent servir eines específiques.
  • Fer servir mètodes de Mineria de Dades per generar coneixement en base a les dades extretes dels mitjans socials

  • Visualitzar els resultats per a extreure coneixement de les dades.
  • Saber interpretar i argumentar de manera clara i exhaustiva els resultats obtinguts de les dades analitzades.
  • Entendre les implicacions de la recopilació i anàlisi de dades per a la privadesa de les persones implicades.

  Competències   Les competències bàsiques i generals del màster que estan vinculades a l'assignatura Big data i social media són les següents:

  • Disposar de coneixements que aportin una base o oportunitat de ser originals en el desenvolupament o aplicació d'idees, sovint en un context de recerca.
  • Saber comunicar, per part dels estudiants, les conclusions a les quals han arribat a públics especialitzats i no especialitzats d'una manera clara i sense ambigüitats.
  • Reconèixer i avaluar la rellevància i significació de la informació, i identificar les implicacions i conseqüències d'un argument, discurs o raonament.

Les competències transversals del màster que estan vinculades a l'assignatura Big data i social media són les següents: 

  • Aplicar de forma crítica l'ús de les TIC en l'àmbit d'acadèmic i professional de referència.
  • Dissenyar un pla o projecte i gestionar-lo en un entorn professional o de recerca.

 Les competències específiques del màster vinculades a l'assignatura Big data i social media són les següents: 

  • Reconèixer i dominar les diferents tècniques, tecnologies o recursos per a la identificació, seguiment, recuperació, tractament, creació, representació, visualització, explotació de les dades i continguts que hi ha en els mitjans socials.
  • Comprendre i emetre informes professionals o de recerca en l'àmbit dels mitjans socials.
  • Formular i desenvolupar una estratègia de curació de continguts o gestió de dades en els mitjans socials que permeti, per mitjà de diferents tècniques i mètodes, recopilar, seleccionar i generar informació de qualitat per a l'entorn professional o de recerca.

A partir de les competències específiques del màster, es treballen les competències pròpies de l'assignatura següents: 

  • Dissenyar una estratègia de recopilació i anàlisi de dades per a contestar preguntes d'interès.
  • Identificar fonts de dades rellevants.
  • Fer servir eines per a recopilar dades de Twitter.
  • Preparar la visualització dels resultats obtinguts.
  • Redactar informes per a explicar el procés d'anàlisi i els resultats.
  • Interpretar els resultats traient conclusions per a respondre les preguntes de recerca.

 

Amunt

L'assignatura Big data i social media consta dels continguts següents:
 
Mòdul 1: Dades massives i mineria de dades socials, conceptes i eines bàsiques
Mòdul 2: Mineria de Dades dels Social Media, tècniques per l¿anàlisi de dades massives
Mòdul 3: Visualització de dades extretes dels Social Media
 

Amunt

Material Suport
Introducción al Big Data XML
Introducción al Big Data DAISY
Introducción al Big Data EPUB 2.0
Introducción al Big Data MOBIPOCKET
Introducción al Big Data KARAOKE
Introducción al Big Data XML
Introducción al Big Data HTML5
Introducción al Big Data PDF
Introducción al Big Data OAI-MPH
Introducció al Big Data XML
Introducció al Big Data DAISY
Introducció al Big Data EPUB 2.0
Introducció al Big Data MOBIPOCKET
Introducció al Big Data KARAOKE
Introducció al Big Data XML
Introducció al Big Data HTML5
Introducció al Big Data PDF
Introducció al Big Data OAI-MPH
Social media Toolkit Web
Social media Toolkit Web
[Software]: Tableau. Desktop PDF
[Programari]: Tableau. Desktop PDF
Dades massives i mineria de dades socials, conceptes i eines bàsiques XML
Dades massives i mineria de dades socials, conceptes i eines bàsiques DAISY
Dades massives i mineria de dades socials, conceptes i eines bàsiques EPUB 2.0
Dades massives i mineria de dades socials, conceptes i eines bàsiques MOBIPOCKET
Dades massives i mineria de dades socials, conceptes i eines bàsiques KARAOKE
Dades massives i mineria de dades socials, conceptes i eines bàsiques HTML5
Dades massives i mineria de dades socials, conceptes i eines bàsiques PDF
Datos masivos y minería de datos sociales: conceptos y herramientas básicas XML
Datos masivos y minería de datos sociales: conceptos y herramientas básicas DAISY
Datos masivos y minería de datos sociales: conceptos y herramientas básicas EPUB 2.0
Datos masivos y minería de datos sociales: conceptos y herramientas básicas MOBIPOCKET
Datos masivos y minería de datos sociales: conceptos y herramientas básicas KARAOKE
Datos masivos y minería de datos sociales: conceptos y herramientas básicas HTML5
Datos masivos y minería de datos sociales: conceptos y herramientas básicas PDF
Visualització de dades extretes dels mitjans de comunicació socials XML
Visualització de dades extretes dels mitjans de comunicació socials DAISY
Visualització de dades extretes dels mitjans de comunicació socials EPUB 2.0
Visualització de dades extretes dels mitjans de comunicació socials MOBIPOCKET
Visualització de dades extretes dels mitjans de comunicació socials KARAOKE
Visualització de dades extretes dels mitjans de comunicació socials HTML5
Visualització de dades extretes dels mitjans de comunicació socials PDF
Mineria de dades dels Social media, tècniques per l'anàlisi de dades massives XML
Mineria de dades dels Social media, tècniques per l'anàlisi de dades massives DAISY
Mineria de dades dels Social media, tècniques per l'anàlisi de dades massives EPUB 2.0
Mineria de dades dels Social media, tècniques per l'anàlisi de dades massives MOBIPOCKET
Mineria de dades dels Social media, tècniques per l'anàlisi de dades massives KARAOKE
Mineria de dades dels Social media, tècniques per l'anàlisi de dades massives HTML5
Mineria de dades dels Social media, tècniques per l'anàlisi de dades massives PDF
Visualización de datos extraídos de los medios sociales XML
Visualización de datos extraídos de los medios sociales DAISY
Visualización de datos extraídos de los medios sociales EPUB 2.0
Visualización de datos extraídos de los medios sociales MOBIPOCKET
Visualización de datos extraídos de los medios sociales KARAOKE
Visualización de datos extraídos de los medios sociales HTML5
Visualización de datos extraídos de los medios sociales PDF
Minería de datos de los Social Media, técnicas para el análisis de datos masivos XML
Minería de datos de los Social Media, técnicas para el análisis de datos masivos DAISY
Minería de datos de los Social Media, técnicas para el análisis de datos masivos EPUB 2.0
Minería de datos de los Social Media, técnicas para el análisis de datos masivos MOBIPOCKET
Minería de datos de los Social Media, técnicas para el análisis de datos masivos KARAOKE
Minería de datos de los Social Media, técnicas para el análisis de datos masivos HTML5
Minería de datos de los Social Media, técnicas para el análisis de datos masivos PDF
Virtual Machine Programari en línia
Toolkit de gènere Web
Toolkit de género Web
Adquisición de datos de Twitter Audiovisual
Visualización de datos con Google Data Studio Audiovisual
Visualización de datos con Tableau Audiovisual
Entrenament d'un classificador de gènere Audiovisual
Adquisició de dades de Twitter Audiovisual
Visualització de dades amb Tableau Audiovisual
Entrenamiento de un clasificador de género Audiovisual
Visualització de dades amb Google Data Studio Audiovisual

Amunt

En l'aula es disposa d'un blog amb els materials bàsics per treballar l'assignatura. Contenen un mòduls de lectura obligatòria, que focalitzen el treball de l'assignatura.

A més, a l'aula hi ha un recull de materials de suport, la lectura dels quals s'anirà recomanant en el tauler del professor, per tal de reforçar coneixement i ajudar a la realització dels exercicis.

Amunt

Akhtar, Nadeem (2014). Social Network Analysis Tools, Nadeem Akhtar. En: Fourth International Conference on Communication Systems and Network Technologies

Barabasi L., Martino M. and Posfai M. "Network Science".

Bedi, P., & Sharma, C. (2016). Community detection in social networks. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(3), 115-135.

Bryl, Sergey. Twitter sentiment analysis with R https://analyzecore.com/2014/04/28/twitter-sentiment-analysis/

Easley, D.; Kleinberg, J. (2010) Networks, Crowds, and Markets: Reasoning. Reasoning About a Highly Connected World" <https://www.cs.cornell.edu/home/kleinber/networks-book/>

Ediger, David et al. Massive Social Network Analysis: Mining Twitter for Social Good. A:  2010 39th International Conference on Parallel Processing, San Diego, CA, 2010, pp. 583-593.

Garcia-Alsina, M. (2017). Big Data. Gestión y explotación de grandes volúmenes de datos. Barcelona: Editorial UOC.

Hays, R., & Daker-White, G. (2015). The care.data consensus? A qualitative analysis of opinions expressed on twitter. BMC Public Health, 15.

Külcü, Özgür (2014). Privacy in social networks: An analysis of Facebook. International journal of information management [0268-4012] vol.:34 iss:6 Pàg.:761 -769

Lin, S., Hu, Q., Wang, G., & Philip, S. Y. (2015, May). Understanding community effects on information diffusion. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 82-95). Springer International Publishing

Nadeem Akhtar, Hira Javed, Geetanjali Senga (2013). Analysis of Facebook Social Network. En: 2013 5th International Conference on Computational Intelligence & Communication Networks.

OH, Chong; SASSER, Sheila; ALMAHMOUD, Soliman (2015) Social media analytics framework: the case of twitter and super bowl ads, Journal of Information Technology Management (JITM).

Paradis, Emmanuel "R para Principiantes"

Pérez-Solà, C.; Casas-Roma. J. (2016). Análisis de datos de redes sociales. Barcelona: Editorial UOC

R Package https://www.r-project.org/

Rais, Karfy (2014). Twitter Analysis in RStudio using R. En: https://www.slideshare.net/ajayohri/twitter-analysis-by-kaify-rais

Santos, C. Q. et al. Can Visualization Techniques Help Journalists to Deepen Analysis of Twitter Data? Exploring the "Germany 7 x 1 Brazil" Case. 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, 2016, p. 1939-1948.

Sathiyanarayanan, M.; Pirozzi, D. Spherule diagrams with graph for social network visualization. 2016 8th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, 2016, p. 1-6

Sigman, B. P., Garr, W., Pongsajapan, R., Selvanadin, M., McWilliams, M. and Bolling, K. (2016), Visualization of Twitter Data in the Classroom. Decision Sciences Journal of Innovative Education, 14: 362-381.

Stephens, M., & Poorthuis, A. (2015). Follow thy neighbor: Connecting the social and the spatial networks on Twitter. Computers, Environment and Urban Systems, 53, 87-95.

The Open Graph Viz Platform https://gephi.org

Tutoriales Python https://www.postdata-statistics.com/IntroEstadistica/TutorialesPython/tutorialesPython.html.

Uhl, A., Kolleck, N., & Schiebel, E. (2017). Twitter data analysis as contribution to strategic foresight-the case of the EU research project "foresight and modelling for european health policy and regulations" (FRESHER). European Journal of Futures Research, 5(1), 1-16.

Xu, P. et al. Visual Analysis of Topic Competition on Social Media. IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 12, p. 2012-2021, Dec. 2013.

Zhao, J. et al. (2014)  #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media. IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, p. 1773-1782.

Zubiaga, Arkaitz, et al. Arkaitz Zubiaga 1 , Spina, Damiano; Martínez, Raquel; Fresno, Víctor (2015). "Real¿time classification of Twitter trends." Journal of the Association for Information Science and Technology 66.3 (2015): 462-473.

Amunt

Al llarg del curs alternarem la lectura de continguts teòrics amb exemples per aplicar els conceptes treballats en els materials.

Per treballar la part pràctica utilitzarem eines per descarregar, representar, visualitzar i analitzar dades.

Forma part de la metodologia de treball la lectura continuada dels materials, les pràctiques i les consultes permanents al professor.

Es realitzaren tres Proves d'Avaluació Continuada on de manera progressiva es treballará la mateixa xarxa social. Un cop avaluada cada PAC, l'estudiant rebrà comentaris personalitzats del seu treball.

Amunt

El procés d'avaluació es fonamenta en el treball personal de l'estudiant i pressuposa l'autenticitat de l'autoria i l'originalitat dels exercicis realitzats.

La manca d'autenticitat en l'autoria o d'originalitat de les proves d'avaluació; la còpia o el plagi; l'intent fraudulent d'obtenir un resultat acadèmic millor; la col·laboració, l'encobriment o l'afavoriment de la còpia, o la utilització de material o dispositius no autoritzats durant l'avaluació, entre d'altres, són conductes irregulars que poden tenir conseqüències acadèmiques i disciplinàries greus.

D'una banda, si es detecta alguna d'aquestes conductes irregulars, pot comportar el suspens (D/0) en les activitats avaluables que es defineixin en el pla docent –incloses les proves finals– o en la qualificació final de l'assignatura, sigui perquè s'han utilitzat materials o dispositius no autoritzats durant les proves, com ara xarxes socials o cercadors d'informació a internet, perquè s'han copiat fragments de text d'una font externa (internet, apunts, llibres, articles, treballs o proves d'altres estudiants, etc.) sense la citació corresponent, o perquè s'ha practicat qualsevol altra conducta irregular.

De l'altra, i d'acord amb les normatives acadèmiques, les conductes irregulars en l'avaluació, a més de comportar el suspens de l'assignatura, poden donar lloc a la incoació d'un procediment disciplinari i a l'aplicació, si escau, de la sanció que correspongui.

Amunt

Aquesta assignatura només es pot superar a partir de l'avaluació contínua (AC). La nota final d'avaluació contínua esdevé la nota final de l'assignatura. La fórmula d'acreditació de l'assignatura és la següent: AC.


Ponderació de les qualificacions

Opció per superar l'assignatura: AC

Nota final d'assignatura: AC

Amunt

L'Avaluació Continuada (AC) és el model d'aprenentatge progressiu, on preval l'esforç constant de l'estudiant realitzat al llarg del curs. 

Aquesta assignatura consta de tres PACs (Prova d'Avaluació Continuada), on l'estudiant treballarà diferents aspectes del social media, sobre la mateixa xarxa social.

En la primera l'estudiant seleccionará i descarregarà una xarxa social, i aprendre a plantejar preguntes a les dades.

En la segona, l'estudiant aprendre com visualitzar les dades.

Per últim, a la tercera PAC l'estudiant aprendre a analitzar les dades.

Es considera aprovada l'Avaluació Continuada si s'han superat les tres PACs. 

Nota

La Normativa acadèmica de la UOC disposa que el procés d'avaluació es fonamenta en el treball personal de l'estudiant i pressuposa l'autenticitat de l'autoria i l'originalitat dels exercicis fets.

La manca d'originalitat en l'autoria o el mal ús de les condicions en què es fa l'avaluació de l'assignatura és una infracció que pot tenir
conseqüències acadèmiques greus.

L'estudiant serà qualificat amb un suspens (D/0) si es detecta manca d'originalitat en l'autoria d'alguna activitat avaluable (pràctica, prova
d'avaluació contínua (PAC) o final (PAF), o la que es defineixi al pla docent), sigui perquè ha utilitzat material o dispositius no autoritzats,
sigui perquè ha copiat textualment d'internet, o ha copiat d'apunts, de materials, de manuals o d'articles (sense la citació corresponent),
d'altres estudiants, o per qualsevol altra conducta irregular.

La qualificació de suspens (D/0) en les qualificacions finals d'avaluació comporta suspendre l'assignatura.

D'altra banda, aquesta conducta pot donar lloc a la incoació d'un procediment disciplinari i l'aplicació, si escau, de la sanció que
correspongui.

La UOC habilitarà els mecanismes que consideri oportuns per a vetllar per la qualitat de les seves titulacions i garantir l'excel·lència i la
qualitat del seu model educatiu.

Amunt

Aquesta assignatura es supera per Avaluació Continuada. No hi haurà examen final presencial.

Amunt

Un cop tancat el termini de lliurament de cadascuna de les activitats previstes, el professor proporcionarà feedback general i individualitzat.

A l'aula, presentarà feedback general consistent en dos documents. En primer lloc hi haurà una valoració global de cada PAC, que inclourà el comentari
dels encerts i errors més freqüents i d'altres aspectes que el consultor consideri pertinents. En segon lloc, si s'escau, es proporcionarà una solució tipus o
una selecció de les millors respostes.

A més, el consultor proporcionarà feedback personalitzat a l'estudiant. En el Registre d'Avaluació Continuada farà constar la qualificació
assignada individualment a les activitats que han estat lliurades, i registrarà el missatge on comenti el seu exercici.

Amunt